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Abstract. Blood flow through the ascending aorta of two individuals is studied numerically. Realistic flow simu-
lation is enabled by the combination of MRI and CFD. The aim of this study is the validation of the calculated flow
field and, on the other hand, a comparison between flow distal to an artificial heart valve and native flow of a healthy
volunteer. Three-dimensional, time-dependent computer models of the human ascending aorta were reconstructed
from three-directional data sets acquired by MRI in the subjects studied. MRI velocity measurements downstream
of the aortic valve provided the inflow conditions for the computational study. The pulsatile flow is described by
the ALE-modified Navier-Stokes equations with respect to the time-varying flow domain. The numerical approach
applies our own developed finite-element solver. During systolic acceleration the flow patterns distal to the valves
do not show major differences between the two configurations. During flow deceleration, however, a significant
influence of the disturbed inflow conditions can be found in the whole segment. Using the methods proposed, sim-
ulation of blood flow in the ascending aorta of the two subjects could be successfully performed. There was good
qualitative agreement of blood velocities predicted by CFD and velocity data measured by MRI. In conclusion,
the approach described herein might offer a new way towards an improved assessment of detailed in vivo flow
conditions and alterations of blood flow associated with heart valve prostheses in particular. Combining CFD and
MRI potentially extends the quantification of hemodynamic variables in vivo at a scale beyond the resolution limit
inherent to MRI.

Key words: arbitrary Lagrangian-eulerian method, artificial valve, finite element method, realistic modeling, wall
shear stress

1. Introduction

The aorta is the main blood vessel transporting blood from the left heart to the systemic
circulation. It is of complex three-dimensional geometry including curving, branching and
tapering. Three planes of curvature exist with the aortic arch being the main bending of the
vessel. At the sinuses distal to the aortic valve the coronary arteries, which provide the blood
supply to the myocardium, are connected and at the top of the aortic arch three major arterial
branches are present. The taper of the aorta is about fifty percent of the cross-sectional area
reduction from the aortic root to the beginning of the descending aorta [1].

Blood flow in the ascending aorta exhibits complex patterns. During systole blood is
accelerated, leaving the left ventricle through the aortic valve. Using hot-film anemometry
measurements, it was shown by [2] that velocity profiles distal to the valve are essentially
flat in the ascending aorta and skewed towards the inner wall with respect to the aortic
arch. Reversed flow at the inner wall has also been reported during systolic deceleration and
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the diastolic phase. Large regions of the vessel walls are exposed to high and/or low shear
stress. Such regions are known to be preferred locations for the genesis and development
of atherosclerotic lesions [3]. Numerous experimental studies, as well as numerical invest-
igations on the aortic flow dynamics, have been performed. Studies in idealized geometries
[4, 5] have yielded a basic understanding of occurring flow phenomena. Since local flow
is strongly affected by geometry, more detailed models of in vivo anatomy have become
necessary [6–8]. An important step towards realistic flow simulations concerns the genera-
tion of appropriate computational models. Recent advances in magnetic-resonance-imaging
(MRI) technology have made this modality a method of choice for assessing morphological
and functional information of the cardio-vascular system. This non-invasive technique allows
the measurement of complex arterial geometries including their movement, as well as blood
velocities throughout the cardiac cycle [9, 10]. In this way MRI can provide the anatomical
and hemodynamic input for the computational-fluid-dynamic (CFD) simulations that provide
an opportunity for obtaining a full set of hemodynamic data. The prediction of important
hemodynamic quantities, such as wall shear stress, that cannot be measured directly in the
human vascular system is enabled by a combination of these two methods. An important point
in the combination of computer simulation and measurement is the validation of the results
[11, 12]. In the present study MRI and CFD results for axial and secondary flow patterns have
been compared. Combining CFD and MRI might hold promise for a number of applications
in the cardio-vascular system. In particular, investigation of blood-flow alterations associated
with cardio-vascular implants appears promising. In a first attempt, blood flow downstream of
an artificial aortic valve implanted in a patient is studied by means of realistic simulations and
compared to blood-flow characteristics in the ascending aorta of a healthy volunteer.

Clinically important late complications have been reported in patients with mechanical
valve prostheses. Some of these problems have been associated with differences in the hemo-
dynamic performance of artificial valves with respect to native valves [13–15]. Nevertheless
mechanical heart valves are preferred over other replacement valves for subjects with a life
expectancy greater than ten years due to the long-term durability of the mechanical implants.

The mathematical description of the aortic blood flow uses the time dependent, three-
dimensional, incompressible Navier-Stokes equations for Newtonian fluids. The movement
of the vessel segment during the cardiac cycle caused by the motion of the heart is to be
addressed. This is done by the application of the arbitrary Lagrangian-Eulerian (ALE) method.
This method has proven to be a powerful tool for the description of flow through moving
domains and has been studied by many authors (e.g. [16–18]). The numerical solution method
applies a velocity-pressure correction technique for finite elements.

2. Methods

2.1. MRI DATA ACQUISITION

Due to its superior spatial resolution and image contrast compared with Doppler ultrasound
MR velocity mapping has proven the method of choice for the non-invasive quantification of
velocity fields around heart valves in vivo.

MR velocity mapping is based on the detection of the acquired phase shift of proton
spins moving along a magnetic-field gradient. Velocity encoding is incorporated by adding
two gradients lobes of equal duration and opposite amplitudes to a standard MR imaging
sequence. Thereby a linear relation between the phase shift in each voxel and the velocity
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Figure 1. Velocity measurement slice: native configuration (left) and artificial heart (right).

of motion encoded along the added bipolar gradient is established. Due to magnetic-field
inhomogeneities and susceptibility variations within the patient, it is necessary to perform
two acquisitions with different velocity encoding. The subtraction of the phase images from
the two acquisitions yields the final velocity map, resolving spatial distributions of velocities
in addition to morphological information.

In the in vivo situation, measurements may be compromised by the active cyclic motion
of the heart (cardiac contraction and dilation) and the passive motion of the heart due to
respiration. These motion components may lead to image artifacts and uncertainties about the
exact measurement site with respect to heart valves.

2.1.1. Respiratory-motion compensation
To compensate for the passive motion of the heart resulting from respiration, two-dimensional
spatially selective excitation pulses (navigators) were implemented to detect the actual breath-
ing state on the diaphragm of the patient [19]. Navigators were used at the beginning and at
the end of each heart beat. Only if the breathing state was within a predefined window data
was accepted for reconstruction.

2.1.2. Cardiac-motion compensation
Adaptation of the actual slice position to the active motion of the heart was achieved using
a recently proposed moving slice imaging technique [20]. In essence, a subtractive labeling
technique is used to mark and trace points labeled on the basal plane of the heart, thus allowing
assessment of through-plane motion of any of the cardiac valves throughout the cardiac cycle.

For moving-slice-velocity mapping a gradient echo phase contrast sequence interleaving
the two velocity encoding segments was adapted. In-plane resolution was 1 × 1 mm2 and
imaging slice thickness amounted to 5 mm. Velocity data was recorded in intervals of 30 ms
throughout the cardiac cycle starting 62 ms after the R-wave of the ECG. The initial delay
after R-wave detection was required for execution of the navigator pulse and processing of the
navigator signal. Velocity in slice selecting direction was encoded with an encoding velocity
of 150 cm/s. To reduce intra-voxel dephasing effects in complex flow fields, only 75% of the
full echo was acquired yielding an echo time of 3·9 ms. Missing samples were zero padded and
an asymmetric weighting function was applied to the central portion of the spatial frequency
domain of the data before Fourier transform. Accounting for an average gating efficiency of
about 75% and a heart rate of 70 beats/min, scan duration was 3:30 minutes. Measurements
were obtained at a distance of 1/4 valve diameter downstream from the aortic valve (Figure 1).
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2.1.3. Experimental setup
A healthy, female subject and a patient who had a St. Jude Medical aortic valve implanted
underwent MR examinations. Written informed consent was obtained from both subjects.
The study was approved by the local Ethics Committee and complied with the Helsinki II
declaration. Measurements were carried out using a Philips Gyroscan NT 1.5T whole body
scanner (Philips Medical Systems, Best, The Netherlands) with the subjects lying in supine
position inside the scanner bore.

2.1.4. Geometric model
Aortic geometry was reconstructed from contours extracted on ten axial slices of the ascending
aorta acquired at increasing distances from the aortic valve in the healthy subject. A dedicated
procedure was used to remove discontinuities of the extracted contours over space and time.
The aortic geometry was then matched to the single-slice cross-sectional data obtained in the
patient.

3. Mathematical model

3.1. COMPUTATIONAL MODEL

The extracted geometric data consists of ten cross-sections given by 24 points each for 35
time steps over the entire cardiac cycle. In order to model the beginning of the aortic arch and
to reduce the influence of the outflow boundary conditions the vessel segment was extended
downstream by about one inflow diameter using a Bezier curve for the axial line. A bi-cubic
spline algorithm was developed to create an accurate and smooth model of the inner-vessel
wall surface (Figure 2). The procedure applies smoothing of the axis-line and the surface
in space and periodically in time. The three-dimensional computational mesh is generated
for all computational time steps. The volume-filling method starts from a specified 3D grid
distribution in a straight cylindrical tube using the same surface-mesh structure as the vessel
models. In the first step the tube (occupying � ∈ IR3) is mapped to the aorta model by the
solution of the Laplacian equation with the known wall deformations f as Dirichlet boundary
condition

�d = 0 in �,

d = f on ∂�,
(1)

where d denotes the field of the deformation between the cylindrical tube and the aorta
model. Subsequently the finite-element mesh is generated for all computational time steps
by successive application of the Laplacian solver.

Each component of the measured velocity data was smoothed over the cross-section at
the computational inlet of the vessel segment. The procedure uses a NAG (The Numerical
Algorithms Group Ltd, Oxford, UK) routine that is based on a surface-fitting algorithm of
scattered data [21, Chapter 9]. It determines a smooth bi-cubic spline approximation s(x, y)

to a set of data points (xi, yi, fi) with weights wi, i = 1, . . . , m. A single parameter S must
be specified that controls the trade-off between the closeness of fit and the smoothness of fit.
Recommended values for S are given in the literature [22] provided that the statistical error
in fi is known. Based on in vitro experiments, a standard deviation of 4% was indicated.
However, due to the heart motion, this value cannot be applied to the in vivo data. Therefore
all weights had to be set to one and S was determined by trial and error. Too small values of
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Figure 2. Computational model of the ascending aorta (healthy configuration); a (anterior wall), i (inner wall), p
(posterior wall) and 0 (outer wall); A – F denote locations of planes where computed results are demonstrated.

Figure 3. Axial inflow velocity profiles at peak flow and corresponding flow pulse wave form: Native configura-
tion (a) and artificial heart valve (b). Right: St. Jude Medical� mechanical valve.

S result in spurious oscillations, whereas too large values lead to the loss of the signal and the
spline will be too smooth. Reasonable values were examined by graphical analysis and were
in the range between 500 and 2000. On successful completion the weighted sum of squared
residuals equals the smoothing parameter S

m∑
i=1

ε2
i = S, εi = wi(fi − s(xi , yi)), i = 1, . . . , m (2)

The knots of the spline were located automatically by the routine on the rectangle [xmin, xmax]×
[ymin, ymax]. Numerical experiments revealed the necessity of putting sampling points of zero
velocity and higher weights outside the vessel cross-section within the rectangle. After the
smoothing procedure, the velocity profiles were interpolated to all time steps on the time-
dependent finite-element mesh of the entrance slice and scaled to the correct flow rate. Figure
3 shows the profiles at systolic peak flow for the native configuration and the artificial valve
configuration distal to the St. Jude Medical mechanical valve. These profiles were used as in-
flow boundary conditions in the numerical computations. In the healthy subject, velocity data
was also available at the entrance of the aortic arch and was used for validation purposes. Data
was treated according to the procedures described for the profiles imposing inflow boundary
conditions.
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3.2. FLOW MODEL AND BOUNDARY CONDITIONS

The classical approach to the solution of flow problems uses the Eulerian viewpoint (where
the observer is fixed) because of its capability to handle large deformations. When dealing
with moving flow domains, however, great effort is required to describe the boundary and
convective effects that occur due to a relative movement between the material point and the
observer. The application of the arbitrary Lagrangian Eulerian (ALE) technique addresses
these difficulties. Early presentations of the method can be found for example in [16] and
[23]. A detailed description is given in [24].

At time t ≥ t0 the continuum occupies the region �t ∈ IR3 that varies with time. Let �0

denote the region at the initial time t = t0. The family of mappings

�t : �0 ⊂ IR3 → �t ⊂ IR3, y(x, t) = �t(x) (3)

associates a point x of the reference configuration �0 (ALE frame) to a point y on the current
domain configuration �t (spatial or Eulerian frame) for each t ∈ (t0, T ). Furthermore �t is
assumed to be a homeomorphism, i.e., �t ∈ C0(�0) and it is invertible with a continuous
inverse �−1

t ∈ C0(�t).
Considering a vector-valued function u : �t × (0, T ) → IR3 defined on the Eulerian frame

the corresponding function u∗ := u ◦ �t on the ALE frame is defined as

u∗ : �0 × (0, T ) → IR3, u∗(x, t) = u(�t (x), t). (4)

The time derivative of the function u in the ALE frame written in spatial coordinates is given
by applying the chain rule

∂u

∂t

∣∣∣∣
x

(y, t) = ∂u

∂t

∣∣∣∣
y

(y, t) +
(

∂y

∂t

∣∣∣∣
x

· ∇y

)
u(y, t). (5)

The symbol ∇y indicates the space derivative with respect to the Eulerian coordinates. The
time derivative of the spatial coordinate y expressed in ALE coordinates corresponds to the
domain velocity and will be referred to by

û(y, t) = ∂y

∂t

∣∣∣∣
x

. (6)

It is now possible to recast the Navier-Stokes equations (where the body forces are neg-
lected) that are used to describe the pulsatile blood flow on the time-varying domain �t

ρ

(
∂u

∂t

∣∣∣∣
y

+ (u · ∇)u

)
= ∇ · σ , (7)

∇ · u = 0, (8)

from the Eulerian frame to the ALE frame

ρ

(
∂u

∂t

∣∣∣∣
x

− (û · ∇)u + (u · ∇)u

)
= ∇ · σ , (9)

∇ · u = 0, (10)

where u is the fluid velocity, û denotes the domain velocity, σ is the Cauchy stress tensor and
ρ is the constant fluid density. In the following we will use c = u− û to denote the convective
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velocity which is the difference of the fluid velocity and the domain velocity. As all space
derivatives are taken in the Eulerian frame, we will omit the indicating index (∇ ≡ ∇y).

In this study blood is assumed to be Newtonian. Therefore the symmetric stress tensor can
be expressed by the constitutive equation

σ = −pI + 2µε(u), (11)

where p is the fluid pressure, I is the unit tensor, µ denotes the apparent fluid viscosity and
ε(u) is the rate-of-strain tensor defined as

ε(u) = 1

2

(∇u + ∇uT
)
. (12)

With respect to the incompressible mass conservation, the extra-stresses can be conveniently
inserted into the equation of motion leading to a closed form of the Navier-Stokes system.
When the reference length L0, the reference velocity U0 and the kinematic viscosity ν = µ/ρ

are introduced, the equations can be written in non-dimensional form

∂u

∂t

∣∣∣∣
x

+ (c · ∇)u − 1

Re
�u + ∇p = 0, (13)

∇ · u = 0, (14)

where Re = U0L0/ν is the Reynolds number.
The boundary of the time-varying flow domain �t consists of two disjunct sections �t =

�u ∪ �s, �u ∩ �s = ∅. At the inlet and the vessel wall the time-dependent velocities are
prescribed.

u(t) = g(t), t > 0, on �u. (15)

The three-directional velocity distribution measured by MRI is used as inflow boundary con-
dition. At the vessel walls the no-slip condition is imposed, i.e., the velocity is gained from the
MRI geometry measurements. At the outflow boundary the surface traction force is prescribed
which is mathematically modeled by the Neumann boundary condition

σ · n = h(t), t > 0, on �s, (16)

where n denotes the outward-pointing normal unit vector. The specification of appropriate
force conditions at the artificial boundary is a difficult task in general. In this study the
computational domain was extended by about one inflow diameter in order to minimize the
influence of the applied idealized traction free outflow (h = 0) on the flow region of interest.

The necessity of appropriate initial conditions is superseded by the periodicity property of
the pulsatile flow.

4. Numerical approach

The Navier-Stokes equations are solved numerically by means of a finite-element method.
A weak form of the Navier-Stokes equations (13) and (14) in the ALE formulation may be
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formally written as∫
�t

∂u

∂t

∣∣∣∣
x

· v d� +
∫
�t

(c · ∇u) · v d� + 1

Re

∫
�t

∇u : ∇v d� −
∫
�t

p∇ · v d� =

−
∫
�t

pn · v d� + 1

Re

∫
�t

(∇u · n) · v d�, ∀v ∈ V(�t), (17)

∫
�t

∇ · uq d� = 0, ∀q ∈ Q(�t), (18)

where u and p are sought in appropriate functional spaces. The boundary integral on the right-
hand side of expression (17) reduces to the outflow section as the test functions v vanish on the
moving Dirichlet boundary �u. Therefore, it represents the stresses on �s taken into account
the incompressibility of the fluid∫

�t

(−pn + 1

Re
∇u · n) · v d� =

∫
�s

h · v d� = 0 (19)

and vanishes completely because a zero traction force is applied in this study (h = 0). A
stability analysis of the formulation has been performed in [25].

Formulation (17) is useful since the time derivative is taken in the fixed reference frame.
To avoid time-dependent test functions (they must vanish on �u, i. e., the part of the moving
boundary where essential boundary conditions are applied), a space of test functions W(�0) ≡
H 1

0(�0) is introduced on the ALE frame �0 that is made of smooth functions v̂ : �0 → IR.
By means of the ALE mapping �t the corresponding space of weighting functions on the
Eulerian frame is obtained

V(�t ) = {
v : �t × (0, T ) → IR3 : v = v̂ ◦ �−1

t , v̂ ∈ W(�0)
}
. (20)

The space of pressure test functions is made of square-integrable functions over the domain
�t

Q(�t ) = {
q ∈ L2(�t)

}
. (21)

In Equation (17) a time differentiation occurs under the integral that is taken over the varying
volume �t and, therefore, the two operations cannot be interchanged. This problem can be
solved with help of the Reynolds transport theorem [26, Chapter 4], [27, pp. 210–211] that
expresses the material time derivative of a physical measure that is given as a volume integral
of a function f : �t × (0, T ) → IR in a moving domain

d

dt

∫
�t

f (y, t) d� =
∫
�t

{
∂f

∂t

∣∣∣∣
y

+ ∇ · (f û)

}
(y, t) d�. (22)

When the components of a vector field u = (u1, u2, u3) are associated with the function f ,
the transport theorem can be written for vector-valued functions

d

dt

∫
�t

u(y, t) d� =
∫
�t

{
∂u

∂t

∣∣∣∣
y

+ ∇ · (û ⊗ u)

}
(y, t) d�, (23)
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where the divergence of the tensor product is given by

∇ · (û ⊗ u) = û · ∇u + u(∇ · û). (24)

Now, as the test functions in V(�t) do not depend on time, the following useful relations can
be derived

0 = ∂v

∂t

∣∣∣∣
x

= ∂v

∂t

∣∣∣∣
y

+ (û · ∇)v ∀v ∈ V(�t ), (25)

d

dt

∫
�t

vd� =
∫
�t

v∇ · ûd�, (26)

d

dt

∫
�t

v · ud� =
∫
�t

v ·
(

∂u

∂t

∣∣∣∣
x

+ u∇ · û

)
d�. (27)

By use of expression (27) and the traction-free outflow boundary condition (19), the weak
formulation of the momentum equations (17) can be written

d

dt

∫
�t

u · vd� −
∫
ωt

(u∇ · û) · vd� +
∫

�t

(c · ∇u) · vd�+

1

Re

∫
�t

∇u : ∇vd� −
∫

�t

p∇ · vd� = 0.

(28)

The weak form of the Navier-Stokes equations (28) and (18) is approximated on finite-dimen-
sional subspaces that are spanned by the basis functions {φi}i=1,...,Nu

and {ψi}i=1,...,Np
. The

velocity and the pressure are expressed as linear combinations, viz.

uh = ub +
Nu∑
i=1

uiφi, ph =
Np∑
i=1

piψi, (29)

where ub satisfies the Dirichlet boundary condition on �u. Due to the highly convective flow in
the ascending aorta, the numerical scheme requires a stabilization technique in order to avoid
oscillations in the numerical solution. In this study the streamline upwind Petrov-Galerkin
method [28] is applied that preserves the consistency of the scheme. The method uses modified
velocity-dependent test functions in the weak formulation

φ̃i = φi + k̃SU PG
u · ∇φi

||u||2 , i = 1, . . . , Nu, (30)

where φi are the Galerkin test functions and k̃SUPG denotes the upwind parameter that controls
the factor of upwind weighting. Using the modified functions φ̃i and the basis functions ψi as
test functions the (upwind modified) Galerkin system can be written in matrix notation

Mu̇h − M1uh + K(ch)uh + Luh − QT ph = f h,

Quh = 0, (31)

where the prescribed velocities on �u are included on the right-hand-side vector f . Herein u̇

denotes the fluid acceleration, M is the mass matrix, K the convection matrix, L the diffusion
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matrix, QT the gradient matrix and Q the divergence matrix. The matrix M1 results from
the application of the Reynolds transport theorem and is a mass contribution scaled by the
divergence of the domain velocity.

The solution of system (31) requires considerable computational effort. For this reason a
so-called projection scheme is applied in this study [29, 30]. It is based on the Helmholtz
decomposition principle, which states that any sufficiently regular vector function can be split
into a divergence free and a rotation-free vector field. In [31, Chapter 6] it was shown that
this decomposition can be applied to the weak formulation of the Navier-Stokes equations in
appropriate spaces. The technique splits the problem (31) in the sequence of an advection-
diffusion problem for an auxiliary non-divergence-free velocity field and a projection of the
intermediate velocity field onto the divergence-free functional space. This method was origin-
ally proposed in [32] and [33]. Using Euler backward differences for the time derivative and
a Picard iteration scheme on every time step for the linearization of the convective term, the
algorithm on time step tn+1 reads:
1. In a Burgers step calculate an intermediate velocity field ũ

n+1,m+1 from the linearized
system

(M − �tM1 + �tK(cn+1,m) + �tL)ũ
n+1,m+1 =

Mun,m + �tQT pn+1,m + �tf n+1
(32)

where �t = tn+1 − tn is the time step and ũ
n+1,m+1 contains the unspecified node values

at the new time level tn+1 (n = 0, . . . , N−1) at the iteration step m+1 (m = 0, . . . ,M−
1);

2. Calculate the pressure correction qn+1,m+1

Q̄M−1
d Q̄

T
qn+1,m+1 = − 1

�t
Qũ

n+1,m+1; (33)

3. Calculate the divergence-free velocity field un+1,m+1

un+1,m+1 = ũ
n+1,m+1 + �tM−1

d Q̄
T
qn+1,m+1; (34)

4 Update the pressure pn+1,m+1

pn+1,m+1 = pn+1,m + qn+1,m+1. (35)

In Equations (33) and (34) the symbol Md stands for the concentrated mass matrix and Q̄

and Q̄
T

are the modified divergence and gradient matrix with respect to the velocity boundary
conditions, where only the normal component of the velocity is considered, The validation of
this scheme has been performed in various calculations [34–36],

The calculations use a temporal discretization of about 350 nonconstant time steps per
pulse cycle where the minimum step size is 2·5 × 10−4 s during systolic acceleration and
deceleration, The spatial discretization of the flow domain employs eight-node isoparamet-
ric brick elements with tri-linear velocity interpolants and constant pressure (325,760 nodes
and 316,992 elements leading to a total degree of freedom of 1,294,272), The resulting sys-
tems of linear equations are characterized by non-symmetric, ill-conditioned, sparse and large
band matrices, They are solved by means of a modified bi-conjugate-gradient algorithm [37]
using incomplete LU-/Cholesky-factorization as preconditioning technique, The solution of
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the symmetric and positive-definite pressure equation applies the preconditioned conjugate-
gradient method. The application of this iterative solution method, together with a compact
matrix storage scheme allows the realization of the flow studies on current workstations.

5. Results and discussion

Numerical results of the velocity patterns and wall-shear-stress distributions occurring in the
ascending aorta are presented for the healthy configuration and downstream of the artificial
heart valve. Blood is modeled as a Newtonian fluid with a constant density of ρ = 1044 kg/m3

and constant viscosity of µ = 3·65 × 10−3 Pa s.

5.1. NATIVE VALVE

The healthy configuration has a mean inflow diameter used as reference length L0 = 2·71 ×
10−2 m and a mean inflow velocity U0 = 1·32 × 10−1 m/s resulting in the mean Reynolds
number of Re = 1024. The Womersley number is α = 19·72 (α = L0

√
ω/ν/2) where ω =

7·34 s−1 is the angular frequency corresponding to about 70 heart beats per minute.
To present the predicted velocities in the vessel segment, axial velocity profiles are demon-

strated at six planes along the longitudinal direction at three different phase angles dur-
ing the cardiac cycle (Figure 4). Plane A corresponds to the computational inlet where the
MRI-measured and smoothed axial and secondary velocities were used as inflow boundary
conditions.

As the flow is highly convective, the development of the boundary layer is confined to
a narrow region at the wall. During systolic acceleration until systolic peak is reached, the
flow is characterized by essentially flat velocity profiles in the whole segment. A noticeable
skewing of the profiles towards the inner wall of the aortic arch can be observed. During
flow deceleration flow patterns differ significantly from those during acceleration: zones of
reversed flow develop at the inner wall at the entrance to the aortic arch leading to C-shaped
profiles with highest velocities at the posterior and outer wall.

In order to validate the velocity predictions gained by the fluid-dynamic calculations, an
additional MRI measurement of the three-directional velocity field was performed at plane F.
In general, the comparison between the computational results and the MRI data demonstrates
good qualitative correspondence, although this is restricted to the systolic phase where higher
velocities occur. In Figure 5 contours of the axial velocity component are shown during decel-
eration. Even though the CFD prediction exhibits larger recirculation and a less pronounced
C-shape, the agreement of the patterns is obvious. The same applies for the secondary motion.
For high velocities during the systolic phase MRI measurements are of good quality and,
thus, the computational results agree very well. Figure 6 shows the velocity streamlines at
crosssection F at one specific phase angle during the deceleration phase.

Both the MRI measurements and the CFD result demonstrate two major vortices at the
inner wall and the posterior wall, respectively. A very important hemodynamic quantity that
cannot be measured directly by MRI is the wall shear stress [38]. Contour plots of the axial
WSS distribution during systolic acceleration and systolic deceleration are shown in Figure 7.
High stresses occur at the inner wall when the flow is accelerating with the velocity profiles
skewed towards this wall. This pattern changes immediately after the systolic peak. A zone
of recirculation develops at the inner wall and high stresses migrate along the posterior wall
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Figure 4. Healthy configuration: axial velocity profiles during systolic acceleration (a) systolic peak (b) and
systolic deceleration (c) at cross-sections as indicated.

towards the outer wall. As deceleration continues, zones of low and negative WSS spread over
large regions at the inner and anterior wall.

The time history of the WSS is demonstrated at four points located at the anterior, inner,
posterior and outer wall at cross-section F (Figure 8). Highest values occur at the inner point
and the posterior point during flow acceleration. Even before the systolic peak is reached, the
WSS decreases rapidly towards zero at the inner point, while the other three points exhibit
moderate values during systolic deceleration. At end diastole the outer point experiences
relatively large negative WSS indicating reverse flow at the outer wall at this time.
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Figure 5. Healthy configuration: axial velocity profiles at cross-section F during systolic deceleration; comparison
between CFD result and MRI measurement.

Figure 6. Healthy configuration: streamlines at cross-section F during systolic deceleration color-coded with the
velocity magnitude; comparison between MRI measurement (a) and CFD result (b).

5.2. ARTIFICIAL VALVE

For the study of aortic blood flow distal to an artificial heart valve a patient with similar
flow parameters, i.e., Reynolds number Re = 948 and Womersley number α = 18·71, was
selected. The underlying physiological parameters are as follows: the inflow diameter L0 =
2·54 × 10−2 m, the mean inflow velocity U0 = 1·31 × 10−1 m/s and the pulse period T =
0·85 s. Only the axial component of the inflow velocity was measured and incorporated into
the calculation. Therefore the contribution of the in-plane velocities could not be considered
which constitutes a certain drawback for the comparison with the native configuration.

In Figure 3b the axial velocity profiles just downstream of the artificial valve at systolic
peak flow are shown. Two significant jets are expelled from the heart and regurgitation occurs
simultaneously at the anterior and posterior wall caused by the specific shape of the implanted
artificial valve (shown in Figure 3 on the right-hand side). Corresponding to Figure 4 for
the native flow the predicted axial velocity profiles are shown in Figure 9. During systolic
acceleration the flow characteristic downstream of the artificial heart valve is very similar to
that of the native valve. Due to the high acceleration, blunted profiles develop very quickly.
The specific shape of the inflow profiles changes immediately downstream of the valve and
a skewing towards the inner wall of the aortic arch can be observed. When acceleration
decreases, the inflow profiles are conserved much longer. At the systolic peak the two jets
corresponding to the major orifices of the valve prosthesis can still be observed in the aortic
arch with a skewing to the posterior wall. At flow deceleration C-shaped profiles arise at the
entrance to the aortic arch.
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Figure 7. Healthy configuration: axial wall shear stress distribution during systolic acceleration (left) and at the
beginning of systolic deceleration (right).

Figure 8. Healthy configuration: axial wall shear stresses at four points at cross-section F over the cardiac cycle
(for definition see Figure 2).

The WSS distribution is characterized by significantly higher values than in the healthy
configuration (Figure 10). This is primarily caused by the specific flow wave form in this
patient: flow acceleration is higher, the flow rate at the systolic peak is about 1·2 times higher
and the systolic phase is shorter compared to the volunteer’s wave form. Moreover, the two
jets that are expelled from the heart become skewed towards the vessel walls, which results
in higher WSS at these sites. At the inner wall and at the outer wall downstream of the flow
entrance, regions of high WSS develop that persist during the entire systolic phase. During
acceleration only a small zone of negative WSS occurs at the flow inlet indicating regurgit-
ation into the heart. During deceleration reversed flow can be observed on large parts of the
anterior, inner and outer wall. In Figure 11 the time history of the axial WSS is shown at
four points in plane F. The locations correspond to those of the healthy configuration shown
in Figure 8. For all four points remarkable oscillations occur during the entire cardiac cycle
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Figure 9. Artificial valve configuration: axial velocity profiles during systolic acceleration (a), systolic peak (b)
and systolic deceleration (c) at cross-sections as indicated.

and especially during systole. The posterior point experiences the highest values that are in
the range of the ones appearing for the native flow (about 26 N/m2). At the same location
also the lowest stresses can be observed at the beginning of the diastolic phase. As for the
healthy configuration approximately at mid-diastole flow reversion develops at the outer wall
as indicated by the negative stress values for the outer wall point.
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Figure 10. Artificial valve configuration: axial wall-shear-stress distribution during systolic acceleration (left) and
systolic deceleration (right).

Figure 11. Artificial valve configuration: axial wall shear stresses at four points at cross-section F over the cardiac
cycle (for definition see Figure 2).

6. Conclusion

A new approach for studying details of human blood flow based on computational simulations
in realistic, time-varying anatomic models as obtained from MRI data has been presented.
Integration of moving slice acquisition into the MRI protocol, as well as dedicated methods for
CFD, such as the ALE-modified Navier-Stokes solver for three-dimensional, time-dependent
Newtonian fluid flow in moving geometries, resulted in realistic simulations. The comparison
of flow patterns predicted from simulations with data measured by MRI indicate the validity of
the methods suggested. A first application assessing differences of blood flow and wall shear
stress of native and mechanical valves illustrate the potential for detailed studies of blood flow
in and around cardiovascular implants in vivo. As such the combination of CFD and MRI
appears to be a promising tool for studying designs of implants helping to further improve
their in vivo performance.
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